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Abstract. NHANES II is a database of cervical and lumbar x-ray spinal
images and is a nationally important database maintained at the Na-
tional Library of Medicine. This paper gives an overview of our efforts to
index NHANES II images for osteophyte severity which is one of the lead-
ing causes of back pain. We first use a template deformation algorithm to
extract vertebra boundaries. Shapes of vertebrae are then conveniently
described in shape spaces. Our major contribution here is a fast retrieval
scheme for both complete and partial shapes in shape space with index-
ing after optimal embedding. Our experiments first evaluate the perfor-
mance of different proposed shape distances and demonstrate the opti-
mality of the embedding algorithm. The proposed indexing scheme with
the NHANES II database achieves the sub-linear retrieval complexity.

1 Introduction

The ability to retrieve images using shapes of organs is important for medical
image databases. In medical practice, it is common to characterize shapes of
organs by the locations of a few key landmarks and the main aim of this paper
is to use such landmarks to index complete and partial shapes of organs. By
indexing “partial shape” we mean indexing the shape of only a part of the
contour. Indexing partial shapes is important because many diseases affect organ
shape locally, changing only a part of the boundary.

The NHANES II is a national health survey of the U.S. population. Be-
cause of the prevalence of neck and back pain, the survey collected approximately
17,000 spine x-ray images: 10,000 of which are cervical spine x-rays and 7,000 are
lumbar spine x-rays. Fig. 1(a) and (b) show two example images from NHANES
II.

Osteophytes are important markers of spine disease. They form in response
to repetitive strain and manifest as bony prominences along the anterior, lateral
and posterior aspects of the vertebral body [1]. Workshops held by the National
Institutes of Health (NIH) and the National Institute of Arthrtitis and Muscu-
loskeletal and Skin Diseases (NIAMS) identified anterior osteophytes as the one
of most important features of NHANES II images. Osteophtyes are visible as the
sharp prominences at the bottom left of the outlines in Fig. 1 (c) to (f). It is
quite clear from these figures that the presence and severity of osteophytes affects
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Fig. 1: Example images from NHANES II and several vertebrae with osteophyte sever-
ity increasing from (c) to (f)

the shape of the vertebral boundary. Thus retrieval by shape of the vertebral
boundary is one means for retrieval by osteophyte severity.

Our aim is to construct a retrieval-by-similarity capacity for NHANES II
where a user can select or provide a query shape q and the system retrieves images
with k most similar shapes u according to a shape distance D(q, u). This is the
k-nearest neighbor query. We expect the retrieved vertebrae to have osteophyte
severity that is similar to the osteophyte severity in the query vertebra.

Boundaries and Shapes In NHANES II: Boundaries of vertebrae in
NHANES II images are available as a result of previous interactive segmenta-
tion using a dynamic programming template deformation algorithm [20]. The
segmentation yields a set of 34 ordered points around the boundary. By the
shape of a vertebra we mean the shape of the 34 ordered points in the plane ob-
tained by the segmentation. The precise definition of shape and shape distance
is given in section 2.

Similarity Retrieval and Indexing: The shape space of a finite set of
landmarks in the plane is known to be a Riemannian manifold – it is in fact a
complex projective space with a natural metric [7]. Because this shape space is
non-Euclidean, standard indexing algorithms, which are designed for similarity
retrieval in Euclidean spaces, cannot be used for similarity retrieval in it. On
the other hand, all the metric access methods proposed recently are designed
for the similarity retrieval using a fixed distance metric. It is not clear how
those metric access methods can be implemented for similarity retrievals using
different distance metric functions based on users’ requirements. To emphasize
the pathological difference with respect to the osteophyte severity, we need an
indexing structure to support both complete and partial shape retrievals.

Our key contribution is to solve the problem of creating indexing structures,
which allow adaptable similarity queries (complete or partial), for non-Euclidean
shape spaces. We first optimally embed shape space in a vector space and index
the embedding space with standard Euclidean indexing techniques. Our indexing
structures in the embedding shape space support both complete and partial
shape retrieval efficiently.

Related Work: This paper focuses on the research of shape-based image
retrieval. We briefly mention some of the related work. Content-based Image



Retrieval (CBIR) provides a flexible way to browse or retrieve images using
visual information and the literature on this topic is vast. Lack of space prevents
us from reviewing it exhaustively. We simply refer readers to the review papers in
medical applications [19, 13]. For the shape extraction methods, we refer readers
to the surveys of powerful active contour and level set formulations [10, 11].

Shape descriptors of extracted curves may be boundary based [12, 17] or
region based [8, 17]. When landmarks are available, the shape of the landmarks
are described as elements of an appropriate shape space [9, 7]. Many researchers
have also proposed schemes to compare partial shapes e.g. [14]. They are based
on a dynamic programming alignment of curve fragments. The corresponding
indexing methods [16] are computationally expensive.

Fast nearest-neighbor searches in Euclidean spaces have a rich history (e.g. [4,
5]). Metric access methods ([2, 6]), indexing schemes proposed for generic metric
spaces, have also attracted attention from the researchers. A user-adaptable
similarity retrieval has been proposed to support different distances in Euclidean
spaces [18]. However, there is not yet an indexing algorithm that works for user-
adaptable similarity retrieval in non-Euclidean spaces. In particular, we are not
aware of any algorithm that indexes in shape spaces.

The rest of the paper reads as follows: A brief introduction on shape, shape
and pre-shape spaces is presented in Section 2. Section 3 discusses the idea of
embedding the shape space in the pre-shape space and proposes the weighted
partial shape distances. The resulting indexing structure is discussed in Section
4. Experimental results are given in Section 5. Section 6 concludes the paper.

2 Shape, Shape Space, and Shape Metrics

We begin our technical description by briefly reviewing shape and shape spaces.
Suppose we are given m point landmarks in a plane. The shape of these points
is taken to be the property of the landmarks that is independent of translation,
rotation, and scaling. To be more precise, we consider the action of the similarity
group on the landmarks. Two sets of landmarks are considered equivalent if
they can be mapped onto each other exactly by some element of the similarity
group. This partitions the set of all m landmarks into equivalence classes. Each
equivalence class represents a shape. The shape space is the quotient space of
the set of all m landmarks under the above equivalence relation. Kendall showed
that for m landmarks in the plane the shape space is a familiar manifold – it is
the complex projective space of complex dimensions m− 2 [9, 7].

The above is a direct route to the definition of shape spaces. However a
slightly different description is more illuminating and suggestive. The quotient
space under the similarity group can be constructed by first finding the quotient
space under translation and scaling, followed by the quotienting of this space
under rotations (Fig. 2). Let the m 2-D landmarks be represented as a complex
position vector z = [x1 + jy1, x1 + jy1, . . . , xm + jym]T ∈ Cm, where j2 = 1;
(xi, yi) is the coordinate for the ith landmark, and Cm is the vector space of
m complex variables. The quotient space of Cm with respect to translation
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Fig. 2: Embed shape space back to pre-shape space

and scaling can be easily shown to be a unit complex sphere in Cm (Fig. 2).
This space is called the pre-shape space PSm. The pre-shape of z is Z = (z −
zT 1m)/‖z − zT 1m‖, where 1m = [1/m · · · 1/m]T . Every point in the pre-shape
space generates an orbit under rotation of the original plane. Each orbit is a
shape [Z]s and the set of all orbits forms the shape space SSn as shown in Fig.
2.

Each vertebral boundary in the database maps onto its shape in the shape
space and similarity retrieval corresponds to retrieving the k closest shapes
to the query shape using a distance in the shape space. One of the natural
Riemannian metrics is known as partial Procrustes distance d2

P ([Zk]s, [Zk]s) =
minθ ‖ Zk − ejθZl ‖2, where θ is the rotation factor.

3 Embedding Shape into a Vector Space

Since shape space is a non-Euclidean manifold, classical indexing techniques
cannot be used with it. We index the shape space by first embedding it in a
vector space as illustrated in Fig. 2. Recall that the pre-shape space PSm is the
unit sphere in Cm and assume that the map ρ : PSm → SSm takes the entire
equivalence class of pre-shapes to the shape [Z] = ρ(Z). One natural way to
embed the shape space SSm into the vector space Cm is to “invert” the map
ρ. That is, we re-embed the shape [Z]s in the orbit of the pre-shape Z at some
point ejθZ (Fig. 2).

Let zk, k = 1, · · · , n be the configurations in the database, and let Zk and
[Zk]s be their pre-shapes and shapes respectively. We embed [Zk]s at the point in
the pre-shape orbit given by ejθkZk for some θk. After embedding, the Euclidean
distance between shapes [Zk]s and [Zl]s is dE([Zk]s, [Zl]s) = ‖ejθkZk−ejθlZl‖Cm ,
where ‖ ‖Cm is the usual Euclidean norm in Cm. In general, this shape distance
is different from the partial Procrustes distance, and we would like to choose an
embedding such that the difference between them is as small as possible.

One measure of the difference between the partial Procrustes distance dP

and the Euclidean distance defined above is

J =
∑

k

∑
l

| d2
E([Zk]s, [Zl]s)− d2

P ([Zk]s, [Zl]s) |. (1)



We would like to choose the embeddings ejθ1Z1, e
jθ2Z2, · · ·, ejθnZn, or alter-

natively, choose the angles Θ = (θ1, θ2, · · · , θn) such that J is minimized as a
function of Θ.

In [15], we proved that this minimization problem is actually equivalent to
minimize another function

H1(Θ,µ) = 2n
∑

k

‖ ejθkZk − µ ‖2
Cm . (2)

where µ∗ = arg H1(Θ,µ) is a Fréchet mean of the shapes {[Z1]s, . . . , [Zn]s},
which minimizes E[dP ([Zk]s, [Zl]s)2] in statistical sense. To get the optimizing
Θ∗, we only need to align all pre-shapes with µ∗ in optimal positions:

θ∗
k = arg µ∗Z ′

k, (3)

where Z ′
k is the complex conjugate transpose of Zk. This problem has a unique

solution. [9]
Using the embedding map, all database shapes can be embedded into a vector

space, which is decided by µ∗. A summary of the procedure is as follows: i.
Convert each database point zk to its pre-shape Zk = (zk−zT

k 1m)/‖zk−zT
k 1m‖;

ii. Calculate the mean pre-shape µ∗ to minimize the objective function (2) by an
iterative algorithm [15]; iii. Align each pre-shape Zk along its orbit to the mean
pre-shape according to (3). We note in passing that any shape, including those
out of the database, can be embedded as γ([Z]s) = ejθ[u]p, where θ = arg µ∗Z ′

in Cm as long as u∗ exists.
We now introduce distances to compare partial shapes. By comparing partial

shapes, we mean that we have in possession the full set of landmarks, but are
interested in only comparing the relative shape of a subset of the landmarks.

Weighted Partial Procrustes Distance: Let W be a m × m positive
square full rank matrix. Then a weighted Procrustes distance between [Zk]s
and [Zl]s can be defined according to dWP ([Zk]s, [Zl]s) = minθ |WZk −WZle

jθ|
=

√
Z ′

kW ′WZk + Z ′
lW

′WZl − 2|Z ′
kW ′WZl|.

Weighted Euclidean Distance in the Embedding Space: After the
embedding procedure, all shapes in the database are embedded in Cm. We can
represent each embedded shape as a vector γ([Z]s) = ejθ∗Z for any configuration
z, and the Euclidean distance dE([Zk]s, [Zl]s) can be taken as the shape distance
after embedding. The weighted shape distance is defined as

dWE([Zk]s, [Zl]s) =
√

(γ([Zk]s)− γ([Zl]s))′W ′W (γ([Zk]s)− γ([Zl]s)),

where W is again a weighting matrix with positive entries. In particular, if we
set W equal to the diagonal matrix with some entries equal to 1 and the rest
equal to a small positive number (say 0.1), then the weighted shape distance will
mostly compare the shapes of those landmarks that correspond to the weight
of 1. This a partial shape comparison emphasizing the portion of shapes that is
more pathologically important.



4 Indexing Shapes

Because shapes are embedded in a Euclidean space and the relevant distance
between them is a (possibly weighted) Euclidean distance, standard indexing
techniques with adaptable similarity retrieval can be used to index shapes now.
Specifically we use a kd-tree in Cm for indexing [4]. The kd-tree recursively
partitions Cm and arranges the partitions in a tree. Each node of the tree rep-
resents a cube in Cm and the subtree represents the repartitioning of the cube.
The leaves of the kd-tree contain data (the vectors γ([Zk]s) in our case).

In this paper, users can choose different W weighting matrices to define
various distances for shape retrieval using both complete shapes and different
portions of shapes. Considering the retrieval efficiency, it is necessary to find
a uniformly efficient indexing methods for different distance metrics that users
choose. To support the user adaptability, we use the kd-tree, a space partitioning
tree instead of metric access methods where they are only efficient for a fixed
distance which is used for tree construction. Similarity retrieval in our kd-tree,
supporting all the different distance metrics, is efficient since kd-tree is organized
by non-overlap tight covers. For both complete and partial shape retrieval, the
cubes that bound the embedded shapes in the kd-tree node have to be tested for
intersection with the query ellipsoid centered at the query object, which differs
in the weighting matrix W . We implement the user-adaptable similarity retrieval
[18] in our kd-tree.

For performance comparison, we use two standard performance measures.
The first is the average number of node tests per query and the second is the
average number of surviving leaf nodes. The former represents the amount of
calculation in the tree while the latter represents the amount of disk accesses.

5 Experimental Results

The key point of this paper is to support complete and partial shape retrievals
efficiently with a kd-tree after embedding. Before we evaluate the efficiency of the
indexing, we first demonstrate the validity of the new proposed partial distance
metrics and the optimality of our embedding algorithm.

At the moment the vertebral boundaries in 546 images in NHANES II have
been segmented. A total of 2812 boundaries are available. A subset of 94 images
have been graded by an expert with respect to osteophyte severity. The grading
is from 0 to 5, where “0” represents normal vertebrae without osteophyte; “1”
indicates sharp protuberance that is barely visible; “2” means a short osteophyte
with length less than 1/2 disk spacing; “3” implies longer and thicker osteophyte
with length greater than 1/2 disk spacing; “4” and “5” are rare cases of large
osteophytes that can bridge or extend to the next vertebra but have osteophyte
that are straight or bent respectively.

Performance of Partial Shape Distances: As we mentioned before, os-
teophytes appear as localized bony outgrowths along the boundary of a vertebra.
The severity of an osteophyte depends only on the shape of this outgrowth and
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Fig. 3: Comparison of the efficacy of different distance metrics: PPD stands for partial
Procrustes distance; WED stands for weighted Euclidean distance in the embedding

space; and WPPD stands for weighted partial Procrustes distance.

not on the overall shape of the vertebra. Thus a retrieval system that is ca-
pable of using partial shape information (only from the osteophyte) is useful
for NHANES II. In order to demonstrate the advantage of our partial shape
distance metrics, we compare the retrieval results using partial Procrustes dis-
tance, weighted partial Procrustes distance and weighted Euclidean distance in
the embedding space. Two groups of vertebrae, each containing 5 vertebrae with
osteophyte grade 0 and 3 respectively, are chosen as query examples. We choose
grade 0 and 3 vertebral shapes as queries because they are representative and
we have an adequate number of them within the ranked image set.

In each group the vertebrae are ranked using different distances from the
query and we study the expert grades of the retrieved vertebrae. For each k ≥ 1,
the average expert grade of all retrieved vertebrae with rank less than or equal
to k is calculated. When compared to the query grade, this grade indicates for
each k whether or not the retrieved vertebrae had a grade similar to the query.
We call this average grade the running average grade (RAG). For each k, we
also calculate the average positive difference between the grades of the retrieved
vertebrae and the query grade (RAGPD) and the average negative difference
between the grades of the retrieved vertebra and the query grade (RAGND).
These indicate, for every k, the bias in the retrieval, i.e. whether or not the
shape similarity distance tends to favor more severe grades or less severe grades.

Fig. 3 shows the comparison for Grade 0 and 3 groups respectively. Since
the first nearest neighbor is always the query example itself, we only analyze
the trend of the rest of retrieved results. Since Grade 0 is the lowest grade,
there is no negative difference for it and the average positive difference is the
same as running average grade. We plot the mean RAGs and their standard
deviations in Fig. 3(a) for grade 0. Comparing the results from complete and
partial shape retrievals, we find that partial shape retrievals give better results.
RAGs from both partial shape retrievals are lower than RAGs from complete
shape retrieval for all kth nearest neighbors. Fig. 3(b) and (c) show the RAG
and the RAGPD and RAGND for the grade 3 retrievals. In Fig. 3(c), we see
that complete shape distance tends to retrieve more lower grade vertebrae than
partial shape distance. This is because the complete shape distance uses the
entire set of landmarks and considers any shape variation from the other parts



0 0.005 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.002 0.004 0.006
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) (b) (c)

FSD FD

Fr
ac

ti
o

n
 o

f c
o

in
ci

d
en

ce
s

# of coincidences

Fr
ac

ti
o

n
 o

f b
in

 c
o

u
n

t 
o

f  
FS

D

Fr
ac

ti
o

n
 o

f b
in

 c
o

u
n

t 
o

f  
FD

Fig. 4: Metric distortion after optimal shape embedding

of the vertebra just as relevant. This experiment quickly reveals that the weighted
partial shape distances outperformed the complete shape distance: The weighted
shape distance groups together more vertebrae with similar expert grades. This
is reasonable since the expert grade depends only on the local osteophyte shape
rather than the overall shape of the vertebra.

Comparing Embedding Distance with Partial Procrustes Distance:
Next, we experimentally evaluate the closeness of the Euclidean distance after
embedding to the partial Procrustes distance.

To measure the similarity between the two distances we calculate fraction
squared difference FSD = (d2

E([Zk]s, [Zl]s) − d2
P ([Zk]s, [Zl]s)/d2

P ([Zk]s, [Zl]s)
and fractional difference FD = |dE([Zk]s, [Zl]s)−dP ([Zk]s, [Zl]s)|/dP ([Zk]s, [Zl]s)
for a randomly sampled set of 1000 vertebrae from the database. The average
and standard deviation of the FSD and FD are given in Table 1 and histograms
of FSD and FD are shown in figure 4(a), (b). From the table and the figures, it
is clear that the Euclidean distance following optimal embedding is very similar
to the partial Procrustes distance.

Next, we compare the nearest neighbor structure of the data set before and
after embedding as follows: From the set of 1000 vertebrae used in the above
experiment, 100 vertebrae are chosen as query vertebrae. For each query verte-
bra, the set of 20 nearest vertebrae is found according to the partial Procrustes
distance dP and the embedded Euclidean distance dE . Let these sets be SP and
SE respectively. Then SP

⋂
SE is the set of vertebrae that are common to both

retrievals in the query. The distribution of the number of elements in SP

⋂
SE

over the 100 queries is shown in figure 4(c). For 97 of 100 queries the sets SP

and SE were identical, and for 3 queries they differed by a single image.
These experiments show that the embedded Euclidean distance is a good ap-

proximation to the partial Procrustes distance and can be used in shape retrieval
queries.

Retrieval Performance of KD-Tree: As mentioned before, the perfor-
mance of the indexing kd-tree is measured using the average number of node
tests and surviving leaf nodes. We randomly sample the 2812 shapes into sets
of size 434, 1089, 1654 and 2812. Each set is indexed for shape with the algo-
rithms described above. Every point in the database is used as a query image
and 10-nearest neighbor vertebral images are retrieved. Fig. 5 plot the perfor-
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mance measures as a function of the database size. The performance measures
are expressed as percentages. The percentages should remain constant for an
indexing scheme with linear complexity and should decrease with the size of
the database for sub-linear complexity. Both figures suggest that the indexing
procedure has sub-linear complexity. Thus, the procedure is effective in indexing
shapes in the embedding space and scales up well with the size of database.
For complete shape retrieval, we also compare the performance from our kd-tree
and a hierarchical clustering tree. We find that our kd-tree is more efficient. For
the performance of user-adaptable similarity retrieval on the kd-tree, we com-
pare the plots for complete and partial shape retrieval. The plots demonstrate
that our kd-tree support both complete and partial shape retrieval and shape
indexing in the embedding space is efficient.

Figure 6 shows a query example using our algorithm. The leftmost image in
each row is the query image and the successive images are the neighbors retrieved
by the indexing algorithm ranked in increasing shape distance from the query.
Here too it is clear that partial shape retrieval gives better results.

6 Conclusions

The space of all shapes of landmarks is strongly non-Euclidean. Nevertheless,
the shapes can be indexed for complete and partial shape similarity by embed-
ding them in a vector space. In this paper, we proposed such an embedding and
demonstrated experimentally that the proposed indexing has sub-linear com-
plexity for both complete and partial shape similarity retrieval.

Several extensions of this idea are possible. One alternative is to use density-
based clustering methods [3] to derive a piecewise embedding for data which are
not tightly clustered. We hope to investigate these and other possibilities in the
future.
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Fig. 6: Shape query example: (a) Complete shape retrieval; (b) Partial shape retrieval
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2. E. Chávez, et. al., Searching in Metric Spaces, ACM Comp. Surveys, 2001.
3. M. Ester, et. al., A Density-Based Algorithm for Discovering Clusters in Large Spa-

tial Databases with Noise, KDD 1996.
4. J. Friedman, J. Bentley, and R. Finkel, An algorithm for finding best matches in

logarithmic expected time, ACM Trans. Math. Software, pp. 209-226, 1977.
5. V. Gaede, O. Gunther, Multidimensional Access Methods, ACM Comp. Sur.,1998.
6. G. R. Hjaltason and H. Samet, Properties of Embedding Methods for Similarity

Searching in Metric Spaces, IEEE Trans. on PAMI, pp.530-548, 2003.
7. D. G. Kendall, D. Barden, L. He, Shape and Shape Theory, Wiley Series, 1999.
8. Z. Lei, et. al., Computationally Fast Bayesian Recognition of Complex Objects based

on Mutual Algebraic Invariants, Proc. IEEE Int. Conf. on Image Proc., 1995.
9. I. L. Dryden and K. Mardia, Statistical Shape Analysis, J. Wiley, 1998.
10. R. Malladi, J. A. Sethian, B. C. Vemuri, Shape Modeling with Front Propagation:

A Level Set Approach, IEEE Trans. on PAMI, 17(2), pp. 158–175, 1995.
11. T. McInerney and D. Terzopoulos, Deformable Models in Medical Image Analysis:

A Survey, Medical Image Analysis, 1(2), pp. 91-108, 1996.
12. F. Mokhtarian, et. al.. Robust and Efficient Shape Indexing Through Curvature

Scale Space, Proceedings of BMVC, pp. 53–62, 1996.
13. H. Muller, et. al., A review of content-based image retrieval systems in medical

applications - clinical benefits and future directions, Int. J. Med. Inform., 1-23, 2004.
14. E. Petrakis, et. al., Matching and Retrieval of Distorted and Occluded Shapes Using

Dynamic Programming, IEEE Trans. on PAMI, Vol. 24, No. 11, 2002, pp. 1501-1516.
15. X. Qian, H. D. Tagare, Optimal Embedding for Shape Indexing in Medical Image

Databases, MICCAI 2005.
16. G. Robinson, et. al., Medical Image Collection Indexing: Shape-Based Retrieval

Using KD-Trees, Comp. in Med. Img. Graph., 20(4), pp. 209-217, 1996.
17. Y. Rui, et. al., Image retrieval: current techniques, promising directions and open

issues, Journal of Vis. Comm. Img. Rep., pp. 1–23, 1999.
18. T. Seidl, H-P Kriegel, Efficient User-Adaptable Similarity Search in Large Multi-

media Databases, VLDB 1997.
19. A. W. M. Smeulders, et. al., Content-based image retrieval at the end of the early

years, IEEE Trans. on PAMI, pp. 1349-1380, 2000.
20. H. D. Tagare, Deformable 2-D Template Matching Using Orthogonal Curves, IEEE

Trans. on Med. Imaging, Vol. 16(1), pp. 108-117, 1997.


